<menu id="nvdjl"><th id="nvdjl"></th></menu>

  • <mark id="nvdjl"></mark>
  • 師資

    湯濤
    講席教授
    中國科學院院士
    副校長
    tangt@sustech.edu.cn

    湯濤,男,漢族,1963年5月出生,1990年參加工作,理學博士,中國科學院院士,美國工業與應用數學學會會士(SIAM Fellow),美國數學學會會士(AMS Fellow)。湯濤教授1984年取得北京大學數學學士學位;1989年獲英國利茲大學數學博士學位;1990年至1998年執教于加拿大西門菲莎大學,取得終身教職;1998年加入香港浸會大學,2003年任數學講席教授。湯濤教授曾任香港浸會大學數學系系主任、研究生院院長、代理副校長、協理副校長、理學院院長。2015年5月被聘為南方科技大學副校長,數學系講席教授。

     

     

    研究領域:
    計算數學,數值分析,偏微分方程數值解

     

    榮譽及獲獎:
    ◆ 1988: Leslie Fox Prize for numerical analysis
    ◆ 2003: 馮康科學計算獎
    ◆ 2007: 國家杰出青年(海外)科學基金獎
    ◆ 2007: 教育部2007年度高等學校科學技術獎(自然科學一等獎)
    ◆ 2008-2012: 香港數學會會長
    ◆ 2012: 美國工業與應用數學學會會士(SIAM Fellow)
    ◆ 2016: 國家自然科學二等獎
    ◆ 2017: 美國數學學會會士(AMS Fellow)
    ◆ 2018: 國際數學家大會45分鐘報告

     

    期刊編委:
    ◆ SIAM Journal on Numerical Analysis (2002-2010)
    ◆ Journal of Computational Mathematics (2006-2016)
    ◆ Journal of Computational Physics (2003-)
    ◆ Mathematics of Computation (2006-2013)
    ◆ Computers and Fluids (2003-2014)
    ◆ Journal of Scientific Computing (2006-)
    ◆ Communications in Computational Physics (執行主編)
    ◆ Frontiers of Mathematics in China (副主編)
    ◆ Numerical Mathematics: Theory, Methods and Applications (主編,2016)
    ◆ 《數學文化》(主編,2010-)

     

    代表文章:(全部文章及鏈接見此處)

    ◆ X. Feng, T. Tang and J. Yang,
    Long time numerical simulations for phase-field problems using p-adaptive spectral deferred correction methods, SIAM J. Sci. Comput. 37 (2015), A271-A294.

    ◆ T. Tang and T. Zhou,
    On discrete least square projection in unbounded domain with random evaluations and its application to parametric uncertainty quantification, SIAM J. Sci. Comput. 36(5) 2014, A2272-A2295.

    ◆ Zhonghua Qiao, Zhengru Zhang, and Tao Tang,
    An adaptive time-stepping strategy for the molecular beam epitaxy models, SIAM J. Sci. Comput. 33 (2011), 1395-1414.

    ◆ Yanping Chen and T. Tang,
    Convergence analysis of the Jacobi spectral-collocation methods for Volterra integral equations with a weakly singular kernel, Math. Comp. 79 (2010), 147-167.

    ◆ Chuanju Xu and T. Tang,
    Stability analysis of large time-stepping methods for epitaxial growth models, SIAM J. Numer. Anal. 44 (2006), 1759-1779.

    ◆ H. P. Ma, W. W. Sun, and T. Tang,
    Hermite spectral methods with a time-dependent scaling for parabolic equations in unbounded domains, SIAM J. Numer. Anal.43 (2005), no. 1, 58-75.

    ◆ H.-Z. Tang and T. Tang,
    Adaptive mesh methods for one- and two-dimensional hyperbolic conservation laws, SIAM J. Numer. Anal. 41 (2003), no. 2, 487-515.

    ◆ R. Li, W.-B. Lin, H. P. Ma, and T. Tang,
    Adaptive finite element approximation for distributed elliptic optimal control problems, SIAM J. Control Optim. 41 (2002), 1321-1349.

    ◆ R. Li, T. Tang, and P.-W. Zhang,
    Moving mesh methods in multiple dimensions based on harmonic maps, J. Comput. Phys. 170 (2001), 562-588.

    ◆ T. Tang and M. R. Trummer,
    Boundary layer resolving pseudospectral methods for singular perturbation problems, SIAM J. Sci. Comput. 17 (1996), 430-438.

    ◆ M. Li, T. Tang, and B. Fornberg,
    A compact fourth order finite difference scheme for steady incompressible Navier-Stokes equations, Internat. J. Numer. Methods Fluids 20 (1995), 1137-1151.

    ◆ T. Tang and Z. H. Teng,
    The sharpness of Kuznetsov's O( sqrt Delta x) L1-error estimate for monotone difference schemes, Math. Comp. 64 (1995), 581-589.

    ◆ T. Tang,
    The Hermite spectral method for Gaussian type functions, SIAM J. Sci. Comput. 14 (1993), 594-606.

    專著:
    ◆ Spectral and High-Order Methods with Applications
    (Science Press, Beijing; by Jie Shen, Tao Tang, 2006)

    ◆ Spectral Methods: Algorithms, Analysis and Applications
    (Springer, 2011; by Jie Shen, Tao Tang and L-L Wang)

    ◆ Numerical Solution of Differential Equations: Introduction to Finite Difference and Finite Element Methods
    (Cambridge University Press, by Zhilin Li, Zhonghua Qiao, and Tao Tang, 2017)

    ◆ 《數學之英文寫作》
    (湯濤、丁玖,高等教育出版社,2013)

    ? 2018 All Rights Reserved. 粵ICP備14051456號
    午夜电影网